顔画像情報解析のためのクラスタ数適応型自己組織化マップシステム
スポンサーリンク
概要
- 論文の詳細を見る
The Self-organizing Map(SOM)is the most widely used artificial neural network algorithm in the unsupervised learning category. A clustering system is a major application of SOM. Normally, a SOM uses neurons of fixed size. However, it is hard to detemine the specific size of neurons that match the purpose of a clustering system, such as facial image clustering In this study, I propose a method that assesses the variation in the size of neurons according to the diversity of data. This method uses the Euclidean distance as an index to decide to whether insert a new neuron or eliminate a neuron. Test images of 3 and 26 patterns were inputted during the self-orgrnization process into the SOM which initially had 20 neurons. As a result, 7 and 69 neurons were obtained respectively. The proposed method created a clustering system that varied with the number of clusters. I applied the proposed method to classify facial images. I chose the infants′ facial images of 2 and 5 month old infants as test data, which had difference in complication of facial expressions. As a result, the number of clusters changed according to the variety of the infants′ facial egressions. Thus the proposed method is useful to make a clustering system for facial image analysis.
- 2007-12-30
著者
関連論文
- 人工心臓のための小型ハイブリッド型磁気軸受
- 202 健康管理ロボットによる食事摂取量計測に関する基礎的研究(ライフサポートにおける工学技術)
- 203 人工心臓用磁気軸受の最適設計(ライフサポートにおける工学技術)
- 顔画像情報解析のためのクラスタ数適応型自己組織化マップシステム
- 低エネルギ複合による生体接合技術の開発
- ナノ振動刺激時における細胞膜近傍の剪断応力解析
- ナノ振動が細胞に与える影響
- 振動エネルギー利用による生体接合技術の開発