Inequalities for eigenvalues of the biharmonic operator with weight on Riemannian manifolds
スポンサーリンク
概要
- 論文の詳細を見る
Given a compact Riemannian manifold M with boundary (possibly empty), we consider the eigenvalues of the biharmonic operator with weight on M, proving a general inequality involving them. Using this inequality, we consider these eigenvalues when M is a compact domain of one of the following three spaces: 1) a complex projective space, 2) a minimal submanifold of a Euclidean space and 3) a minimal submanifold of a unit sphere.
- 社団法人 日本数学会の論文
- 2010-04-01
著者
-
Wang Qiaoling
Departamento de Matemática, Universidade de Brasília
-
Xia Changyu
Departamento de Matemática, Universidade de Brasília
-
Wang Qiaoling
Departamento De Matematica Universidade De Brasilia
-
Xia Changyu
Departamento De Matematica Universidade De Brasilia
関連論文
- Inequalities for eigenvalues of the biharmonic operator with weight on Riemannian manifolds
- Inequalities for eigenvalues of the biharmonic operator with weight on Riemannian manifolds
- On the minimal submanifolds in CP[m](c) and S[N](1)