A classification of graded extensions in a skew Laurent polynomial ring, II
スポンサーリンク
概要
- 論文の詳細を見る
Let <I>V</I> be a total valuation ring of a division ring <I>K</I> with an automorphism σ and let <I>A</I>=⊕<SUB><I>i</I>∈<B><I>Z</I></B></SUB><I>A<SUB>i</SUB>X<SUP>i</SUP></I> be a graded extension of <I>V</I> in <I>K</I>[<I>X</I>,<I>X</I><SUP>−1</SUP>;σ], the skew Laurent polynomial ring. We classify <I>A</I> by distinguishing three different types based on the properties of <I>A</I><SUB>1</SUB> and <I>A</I><SUB>−1</SUB>, and a complete description of <I>A<SUB>i</SUB></I> for all <I>i</I>∈<B><I>Z</I></B> is given in the case where <I>A</I><SUB>1</SUB> is not a finitely generated left <I>O<SUB>l</SUB></I>(<I>A</I><SUB>1</SUB>)-ideal.
- Mathematical Society of Japanの論文
- 2009-10-01
著者
-
Marubayashi Hidetoshi
Faculty Of Engineering Tokushima Bunri University
-
Xie Guangming
School Of Mathematical Sciences Guangxi Normal University
関連論文
- A classification of graded extensions in a skew Laurent polynomial ring
- A classification of graded extensions in a skew Laurent polynomial ring, II