Particle Swarm Optimizers with Growing Tree Topology
スポンサーリンク
概要
- 論文の詳細を見る
This paper presents a new particle swarm optimizer characterized by growing tree topology. If a particle is stagnated then a new particle is born and is located away from the trap. Depending on the property of objective problems, particles are born successively and the growing swarm constitutes a tree-topology. Performing numerical experiments for typical benchmarks, the algorithm efficiency is evaluated in several key measures such as success rate, the number of iterations and the number of particles. As compared with other basic PSOs, we can suggest that the proposed algorithm has efficient performance in optimization with low-cost computation.
- (社)電子情報通信学会の論文
- 2009-09-01
著者
関連論文
- Artificial Spiking Neurons and Analog-to-Digital-to-Analog Conversion
- Analysis of Simple Single/Parallel Switched Dynamical Systems Based on Two Switching Strategies
- Synchronization and Hyperchaos in Switched Dynamical Systems Based on Parallel Buck Converters
- Chaotic Spike-Train with Line-Like Spectrum
- Inter-Spike interval characteristics of piecewise constant chaotic spikiing oscillators (第21回 回路とシステム軽井沢ワークショップ論文集) -- (カオスと分岐)
- Special Section of Selected Papers from the 9th Karuizawa Workshop on Circuits and Systems
- A Simple Nonautonomous Chaotic Spiking Circuit with a Refractory Threshold(Nonlinear Problems)
- Growing Particle Swarm Optimizers for Multi-Objective Problems in Design of DC-AC Inverters
- Analysis of Unstable Operation in a Basic Delta Modulator for PWM Control(Nonlinear Problems)
- An Approach to Collaboration of Growing Self-Organizing Maps and Adaptive Resonance Theory Maps(Neural Networks and Bioengineering)
- Particle Swarm Optimizers with Growing Tree Topology
- Consistency in a Chaotic Spiking Oscillator
- A Switched-Capacitor Boost Converter including Voltage-Mode Threshold Switching
- Basic Dynamics of Simple Delay-Coupled Bifurcating Neurons
- A Trade-Off between the Maximum Power Point and Stability