Image Enhancement by Analysis on Embedded Surfaces of Images and a New Framework for Enhancement Evaluation
スポンサーリンク
概要
- 論文の詳細を見る
Image enhancement plays an important role in many machine vision applications on images captured in low contrast and low illumination conditions. In this study, we propose a new method for image enhancement based on analysis on embedded surfaces of images. The proposed method gives an insight into the relationship between the image intensity and image enhancement. In our method, scaled surface area and the surface volume are proposed and used to reconstruct the image iteratively for contrast enhancement, and the illumination of the reconstructed image can also be adjusted simultaneously. On the other hand, the most common methods for measuring the quality of enhanced images are Mean Square Error (MSE) or Peak Signal-to-Noise-Ratio (PSNR) in conventional works. The two measures have been recognized as inadequate ones because they do not evaluate the result in the way that the human vision system does. This paper also presents a new framework for evaluating image enhancement using both objective and subjective measures. This framework can also be used for other image quality evaluations such as denoising evaluation. We compare our enhancement method with some well-known enhancement algorithms, including wavelet and curvelet methods, using the new evaluation framework. The results show that our method can give better performance in most objective and subjective criteria than the conventional methods.
- 2008-07-01
著者
-
Tian Li
Graduate School Of Information Production And Systems Waseda University
-
Kamata Sei-ichiro
Graduate School Of Information Production And System Waseda University
-
TIAN Li
Graduate School of Information, Production and Systems, Waseda University
関連論文
- 高ダイナミックレンジ画像マッピング
- A Pseudo-Hilbert Scan for Arbitrarily-Sized Arrays(Image)
- Fast Polar Harmonic Transforms
- On-line Signature Matching Based on Hilbert Scanning Patterns
- A New Framework for Constructing Accurate Affine Invariant Regions(Image Recognition, Computer Vision)
- A Fast and Accurate Algorithm for Matching Images Using Hilbert Scanning Distance with Threshold Elimination Function(Pattern Recognition)
- Interscale Stein's Unbiased Risk Estimate and Intrascale Feature Patches Distance Constraint for Image Denoising
- A Gradient Based Predictive Coding for Lossless Image Compression(Image Processing and Video Processing)
- D-11-59 Road Sign Detection Method Based on Color Barycenter Threshold
- An N-Dimensional Pseudo-Hilbert Scan for Arbitrarily-Sized Hypercuboids
- Fast Polar and Spherical Fourier Descriptors for Feature Extraction
- A METHOD OF COMPUTING A SPACE FILLING CURVE FOR ARBITRARILY SHAPED REGION (Image Processing and Coding)(International Workshop On Advanced Image Technology (IWAIT2004))
- A MODEFIED METHOD OF ADAPTIVE SPACE-FILLING CODING (Image Processing and Coding)(International Workshop On Advanced Image Technology (IWAIT2004))
- Automatic Image-Map Alignment Using Edge-Based Code Mutual Information and 3-D Hilbert Scan
- A Two-Stage Point Pattern Matching Algorithm Using Ellipse Fitting and Dual Hilbert Scans
- Image Enhancement by Analysis on Embedded Surfaces of Images and a New Framework for Enhancement Evaluation
- Hilbert Scan Based Bag-of-Features for Image Retrieval
- 7-8 Shape Image Retrieval Based on Spherical Harmonics
- A Simple and Effective Clustering Algorithm for Multispectral Images Using Space-Filling Curves
- SSM-HPC : Front View Gait Recognition Using Spherical Space Model with Human Point Clouds
- Face Representation and Recognition with Local Curvelet Patterns
- A Novel Color Descriptor for Road-Sign Detection