ニューラルネットワーク法による風力発電の短時間先発電量予測の精度向上に関する研究
スポンサーリンク
概要
- 論文の詳細を見る
Recently, more and more renewable power plants are connecting into the power grids, and it becomes difficult for power system operators to grasp the system operating condition exactly. Therefore, a proper forecasting method is expected to predict the short-term power generation of the dispersed generators for use of short-term distributed control, short-term operating plan of dispersed generators and electric energy storage equipments, as well as economical employment. For this purpose, in this paper, we approach the forecasting precision enhancement method for the short-term wind power generation by use of an improved NN (Neural Network), which is only based on the real-time meteorological data. By the ways of properly selection of learning data and introduction of two types of improved NN methods called NARX and Ensemble Technique, we attempt to enhance the forecasting precision for the short-term wind power generation. The results from this study show that the Mean Absolute Percentage Errors and Maximum Errors are lower than that of the base model which is based on the generally used FNN method, and thus have verified the validity of these forecasting precision improving methods proposed in this work.
- 2009-09-01
著者
関連論文
- ニューラルネットワーク法による風力発電の短時間先発電量予測の精度向上に関する研究
- 風力発電と電力貯蔵装置併用時における電力システムへの導入効果に関する基礎検討
- 電力・エネルギー部門大会座長のコメントと回答 : 10 電圧制御・電圧安定性
- 自律分散型電圧無効電力制御システム高度化を目指したNN法による地域需要予測法の開発
- 超速応励磁形超電導発電機の励磁系詳細モデルを用いた励磁制御による電力系統安定性向上効果に関する検討
- 洋上風力発電の現状と考察