Automorphism groups of q-trigonal planar Klein surfaces and maximal surfaces
スポンサーリンク
概要
- 論文の詳細を見る
A compact Klein surface X=D⁄Γ, where D denotes the hyperbolic plane and Γ is a surface NEC group, is said to be q-trigonal if it admits an automorphism φ of order 3 such that the quotient X⁄<φ> has algebraic genus q. In this paper we obtain for each q the automorphism groups of q-trigonal planar Klein surfaces, that is surfaces of topological genus 0 with k≥3 boundary components. We also study the surfaces in this family, which have an automorphism group of maximal order (maximal surfaces). It will be done from an algebraic and geometrical point of view.
- 社団法人 日本数学会の論文
- 2009-04-01
著者
-
Estrada Beatriz
Departamento De Matematicas Fundamentales Facultad De Ciencias Uned
-
Martinez Ernesto
Departamento De Matematicas Fundamentales Facultad De Ciencias Uned