独立成分分析を用いた欠陥分布分類とχ^2検定及び正確確率検定を用いた原因工程/設備推定
スポンサーリンク
概要
- 論文の詳細を見る
We developed a system that detects spatial signatures from the defect inspection data of each substrate and thus identifies fault detection in device manufacturing. Leveraging the independent component analysis facilitates an unsupervised simultaneous classification of any defect distribution generated with one or more tool malfunctions. All substrates are classified according to our proposed coefficient of similarity to each defect distribution. A root cause process is identified through a test of independence between the manufacturing tools and their rates of the number of classified substrates on the basis of the classification result and their fabrication history data. The tests of independence use χ2 tests in combination with exact tests to decrease the incidence of false positive errors. The root cause tool is identified in terms of the highest rate between the tools in the identified process. Our system functions automatically and requires no experience or technical skill. We present the case where for approximately two days, our system detected a tool malfunction earlier than the conventional monitoring of substrates, and with greater total defect counts per substrate than a control limit; further, we present another case where our system detected a greater number of substrates than the conventional monitoring.
- 2009-04-01
著者
-
山田 栄二
シャープ(株)生産技術開発推進本部生産自動化開発センター
-
今井 克樹
シャープ(株)生産技術開発推進本部生産自動化開発センター
-
豊島 哲朗
シャープ(株)生産技術開発推進本部生産自動化開発センター
関連論文
- 独立成分分析を用いた欠陥分布分類とχ^2検定及び正確確率検定を用いた原因工程/設備推定
- 工場データを活用した欠陥分布分類と原因設備推定
- D-10-6 ICAを用いた欠陥分布の教師なし分類法(D-10.ディペンダブルコンピューティング,一般講演)
- 2)イメージシフトにるベイヤー配列CCDの高解像度化方法(〔情報センシング研究会 コンシューマエレクトロニクス〕合同)
- 4)高速誤り訂正回路一構成法(画像情報記録研究会)