Asymptotic properties of solutions to dispersive equation of Schrodinger type
スポンサーリンク
概要
- 論文の詳細を見る
We find the asymptotic behavior for large time of solutions to the dispersive equations of Schrödinger type ut-$¥frac{i}{¥rho}$ |∂x|ρu = 0, (t,x) ∈ R × R,where ρ ≥ 2. We obtain some estimates of solutions of linear problem and apply them to nonlinear problems with power nonlinearities of order p ≥ 3. The nonexistence of wave operator and existence of the modified wave operator for the critical nonlinearity i λ |u|2u are studied.
- 社団法人 日本数学会の論文
- 2008-07-01
著者
-
Naumkin Pavel
Instituto De Fisica Matematicas Universidad Michoacana
-
Hayashi Nakao
Department Of Applied Mathematics Science University Of Tokyo
-
Hayashi Nakao
Department Of Mathematics Graduate School Of Science Osaka University
関連論文
- Wellposedness and Analytic Smoothing Effect for the Benjamin-Ono Equation
- Wellposedness and analytic smoothing effect for the Benjamin-Ono equation
- On the global strong solutions of coupled Klein-Gordon-Schrödinger equations
- Isometrical identities for the Bergman and the Szegö spaces on a sector
- Lower Bounds for Order of Decay or of Growth in Time for Solutions to Linear and Non-Linear Schrodinger Equations
- 空間1次元と2次元に於ける非線形SCHRODINGER方程式の修正波動作用素について (非線型波動及び分散型方程式に関する研究)
- Asymptotic properties of solutions to dispersive equation of Schrodinger type
- ASYMPTOTICS AND SCATTERING PROBLEM FOR THE GENERALIZED KORTEWEG-DE VRIES EQUATION (Harmonic Analysis and Nonlinear Partial Differential Equations)
- Asymptotics for large time of solutions for cubic nonlinear Schrodinger equations (Spectral and Scattering Theory and Related Topics)
- Large Time Behavior of Solutions for Derivative Cubic Nonlinear Schrodinger Equations
- Large time behavior of solutions for derivative cubic nonlinear Schrodinger equations
- 一般化されたOstrovsky方程式の漸近挙動 (非線形波動現象の数理と応用)