Sous-algebres de Cartan des algebres de Kac-Moody reelles presque deployees
スポンサーリンク
概要
- 論文の詳細を見る
The classification of almost split real forms of symmetrizable Kac-Moody Lie algebras is a rather straightforward infinite-dimensional generalization of the classification of real semi-simple Lie algebras in terms of the Tits index [J. Algebra, 171, 43-96 (1995)]. We study here the conjugate classes of their Cartan subalgebras under the adjoint groups or the full automorphism groups. Maximally split Cartan subalgebras of an almost split real Kac-Moody Lie algebra are mutually conjugate and one can generalize the Sugiura classification (given for real semi-simple Lie algebras) by comparing any Cartan subalgebra to a standard maximally split one. As in the classical case, we prove that the number of conjugate classes of Cartan subalgebras is always finite.
- 社団法人 日本数学会の論文
- 2006-10-01
著者
-
Rousseau Guy
Institut Elie Cartan Unite Mixte De Recherche 7502 Nancy-universite Cnrs Inria
-
BEN MESSAOUD
Department de Mathematiques Faculte des Sciences de Monastir