The horospherical Gauss-Bonnet type theorem in hyperbolic space
スポンサーリンク
概要
- 論文の詳細を見る
We introduce the notion horospherical curvatures of hypersurfaces in hyperbolic space and show that totally umbilic hypersurfaces with vanishing curvatures are only horospheres. We also show that the Gauss-Bonnet type theorem holds for the horospherical Gauss-Kronecker curvature of a closed orientable even dimensional hypersurface in hyperbolic space.
- 社団法人 日本数学会の論文
- 2006-10-01
著者
-
IZUMIYA Shyuichi
Department of Mathematics Hokkaido University
-
Izumiya Shyuichi
Department Of Mathematics Faculty Of Science Hokkaido University
-
Romero Fuster
Departament De Geometria I Topologia Universitat De Valencia
関連論文
- Slant geometry of spacelike hypersurfaces in the lightcone
- Horospherical flat surfaces in Hyperbolic 3-space
- Slant geometry of spacelike hypersurfaces in the lightcone
- The horospherical Gauss-Bonnet type theorem in hyperbolic space
- Singularities of lightlike hypersurfaces in Minkowski four-space
- How to define singular solutions.
- On Versality for Unfoldings of Smooth Section Germs
- SINGULARITIES FOR VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATINS(Nonlinear Evolutions Equations and Their Applications)
- On G-extensible regularity condition and Thom-Boardman singularities