伸張エラスティカの変分原理
スポンサーリンク
概要
- 論文の詳細を見る
An extensible elastica is a rigorous mathematical model of the Bernoulli-Euler beam whose cross-sections remain plane and normal to the axis after deformations. The principle of virtual work for the extensible elastica expressed in terms of the normal strain and rotation of the axis is derived from the principle of virtual work in the three-dimensional elasticity. And it is shown that the derived principle yields the exact equilibrium equations for a beam in the large deformations and rotations. Utilizing linear constitutive equations, we get the theorem of stationary potential energy expressed also in terms of the axial strain and rotation. And, from the Trefftz criterion on the second variation of the potential energy, we get the buckling equations for the extensible elastica, which give the buckling load higher than the Euler load for a cantilever elastica subjected to compressive end load.
- 社団法人 日本航空宇宙学会の論文
- 2006-05-05
著者
関連論文
- 梁理論に基づく Separation Work によるエネルギ解放率の計算
- Separation Work による DCB 試験片のエネルギ解放率の計算
- 梁理論による層間剥離のエネルギ解放率の計算
- 接触を伴う多重層間剥離座屈
- 伸張エラスティカの変分原理
- カスティリアーノの定理について
- エラスティカの変分原理
- ガリレオ・ガリレイと材料力学