Convolution of Riemann zeta-values : Dedicated to Professor Isao Wakabayashi with great respect
スポンサーリンク
概要
- 論文の詳細を見る
In this note we are going to generalize Prudnikovs method of using a double integral to deduce relations between the Riemann zeta-values, so as to prove intriguing relations between double zeta-values of depth 2. Prior to this, we shall deduce the most well-known relation that expresses the sum ∑_{j=1}<SUP>m-2</SUP> ξ(j+1)ξ(m-j) in terms of ξ_2(1, m).
- 社団法人 日本数学会の論文
- 2005-10-01
著者
-
Kanemitsu Shigeru
Graduate School of Advanced Technology, Kinki University
-
Kanemitsu Shigeru
Graduate School Of Advanced Technology Kinki University
-
Kanemitsu Shigeru
Graduate School Of Advanced Technology University Of Kinki
-
吉元 昌己
日本学術振興会特別研究院(pd)
-
吉元 昌己
名古屋大学多元数理科学研究科
-
吉元 昌巳
九州大学
-
Yoshimoto Masami
Graduate School Of Mathematics Nagoya University
-
Yoshimoto Masami
Graduate School Of Mathematics Kyushu University
-
TANIGAWA Yoshio
Graduate School of Mathematics Nagoya University
関連論文
- Examples of the Hurwitz transform
- 黄金比と五重対称性
- Examples of the Hurwitz transform
- ファレイ分数とリーマン予想(解析的整数論)
- Some sums involving Farey fractions II
- An Application of Zeta Functions (Analytic Number Theory and Surrounding Areas)
- Convolution of Riemann zeta-values : Dedicated to Professor Isao Wakabayashi with great respect
- On Gauss' formula for ψ and finite expressions for the L-series at 1
- バーンズの多重ゼータ函数の函数等式について(解析的整数論とその周辺)
- Madelung constants and Epstein zeta functions (New Aspects of Analytic Number Theory)
- ゼータ関数値のラマヌジャン急収束級数 (解析数論の展望と諸問題)
- Two examples of zeta-regularization (解析的整数論とその周辺)
- ファレイ分数のべき和の漸近展開について (解析数論と数論諸分野の交流)
- Farey series and the Riemann hypothesis (Number Theory and its Applications)
- $L(1, \chi)$の指標に関する2乗平均 (解析的整数論とその周辺)