More Rice, Less Water : Integrated Approaches for Increasing Water Productivity in Irrigated Rice-Based Systems in Asia(Irrigated Rice-Based Systems, <Special Issue>Proceedings of The Fifth Asian Crop Science Conference)
スポンサーリンク
概要
- 論文の詳細を見る
The water crisis is threatening the sustainability of the irrigated rice system and food security in Asia. Our challenge is to develop novel technologies and production systems that allow rice production to be maintained or increased in the face of declining water availability. This paper introduces principles that govern technologies and systems for reducing water inputs and increasing water productivity, and assesses the opportunities of such technologies and systems at spatial scale levels from plant to field, to irrigation system, and to agro-ecological zones. We concluded that, while increasing the productivity of irrigated rice with transpired water may require breakthroughs in breeding, many technologies can reduce water inputs at the field level and increase field-level water productivity with respect to irrigation and total water inputs. Most of them, however, come at the cost of decreased yield. More rice with less water can only be achieved when water management is integrated with (i) germplasm selection and other crop and resource management practices to increase yield, and (ii) system-level management such that the water saved at the field level is used more effectively to irrigate previously un-irrigated or low-productivity lands. The amount of water that can be saved at the system level could be far less than assumed from computations of field-level water savings because there is already a high degree of recycling and conjunctive use of water in many rice areas. The impact of reducing water inputs for rice production on weeds, nutrients, sustainability, and environmental services of rice ecosystems warrants further investigation.
- 日本作物学会の論文
著者
-
Tuong To
International Rice Research Institute
-
Bouman B.a.m
International Rice Research Institute
-
Mortimer Martin
University of Liverpool
-
Tuong To
International Rice Res. Inst. Metro Manila Phi
関連論文
- Comparative Effects of Osmotic and Ionic Stresses on Yield and Biomass Accumulation in IR64 Rice Variety(Plant Nutrition)
- Drought response of dry-seeded rice to water stress timing and N-fertilizer rates and sources(Soil Fertility)
- Response to Salinity in Rice : Comparative Effects of Osmotic and Ionic Stresses(Crop Physiology and Ecology)
- Estimating Percolation and Lateral Water Flow on Sloping Land in Rainfed Lowland Rice Ecosystem(Diversified Cropping Systems for Asia, Proceedings of The Fifth Asian Crop Science Conference)
- More Rice, Less Water : Integrated Approaches for Increasing Water Productivity in Irrigated Rice-Based Systems in Asia(Irrigated Rice-Based Systems, Proceedings of The Fifth Asian Crop Science Conference)