計算機支援による離散力学系の解析(<小特集>力学系の位相計算理論)
スポンサーリンク
概要
- 論文の詳細を見る
This paper is a survey article on computer assisted analysis of discrete dynamical systems. The focus is on the application of the Conley index theory. We discuss the definition and some properties of the Conley index and how to perform rigorous computations of it on a computer. We sketch the steps of our algorithm for computing the Conley index, which is a combination of computational homology theory and interval arithmetic. Finally, we propose a rigorous computational method for detecting homoclinic tangencies in a discrete dynamical system as an example of our argument. The problem of finding homoclinic tangencies is translated to that of finding connecting orbits in an associated dynamics on the projectivized tangent bundle and then the Conley index theory is used to find the connecting orbit. Applying this method, we prove the existence of homoclinic tangencies in the Henon family.
- 日本応用数理学会の論文
- 2005-06-24
著者
関連論文
- 計算ホモロジー理論の力学系への応用
- エノン写像の双曲型パラメータとそのモノドロミー(複素力学系とその周辺)
- 複素エノン写像の双曲型パラメータ領域内のループについて(複素力学系とその周辺分野の研究)
- 精度保証付き数値計算の力学系への応用について(力学系の研究 : トポロジーと計算機による新展開)
- 計算機支援による離散力学系の解析(力学系の位相計算理論)