A Thermodynamic Study of Silicon Containing Gas around a Blast Furnace Raceway
スポンサーリンク
概要
- 論文の詳細を見る
The equilibrium conditions for silicon transfer from ash to the liquid metal phase via SiO gas have been discussed by several authors. However, no published calculations have been found using the most modern thermodynamic models available. Since there are major differences in the results of calculations using different thermodynamic models and the models are continuously being improved, new equilibrium calculations on SiO and SiS gas formation have been performed using the recently developed models. Different ingoing compositions of coke ash, coal powder ash and blast air were used in the calculations. The compositions chosen represent blast furnace no. 3 at SSAB in Luleå, Sweden. Temperature was found to be the major factor influencing the equilibrium silicon level in the gas phase. At low temperatures (below 1600°C) the total gas pressure was also seen to influence the silicon content in the gas phase. The main reason for this is that below 1600°C, the amount of liquid slag at equilibrium increases with the total gas pressure. Liquid slag contains large amounts of silica that then can not be found in the gas phase. Higher carbon activity is usually expected to result in higher SiO gas levels in the blast furnace. The equilibrium calculations show that increased carbon activity increases the amount of silicon in the gas phase at temperatures up to about 1600°C, but that at higher temperatures SiC is formed that decreases the equilibrium silicon level in the gas phase.
- 社団法人 日本鉄鋼協会の論文
- 2005-05-15
著者
-
Joensson P.
Royal Inst. Of Technol. Stockholm Swe
-
GUSTAVSSON J.
Div. of Applied Process Metallurgy, Royal Institute of Technology
-
ANDERSSON A.
Div. of Applied Process Metallurgy, Royal Institute of Technology
-
JONSSON P.
Div. of Applied Process Metallurgy, Royal Institute of Technology
-
Gustavsson J.
Div. Of Applied Process Metallurgy Royal Institute Of Technology
-
Andersson A.
Div. Of Applied Process Metallurgy Royal Institute Of Technology
関連論文
- A Thermodynamic Study of Silicon Containing Gas around a Blast Furnace Raceway
- Fundamental Mathematical Modeling of Gas Injection in AOD Converters
- A New Approach to Using Modelling for On-line Prediction of Sulphur and Hydrogen Removal during Ladle Refining