Inequalities of Noether type for 3-folds of general type
スポンサーリンク
概要
- 論文の詳細を見る
If X is a smooth complex projective 3-fold with ample canonical divisor K, then the inequality K<SUP>3</SUP>≥q(2/3)(2p<SUB>g</SUB>-7) holds, where p<SUB>g</SUB> denotes the geometric genus. This inequality is nearly sharp. We also give similar, but more complicated, inequalities for general minimal 3-folds of general type.
- 社団法人 日本数学会の論文
- 2004-10-01
著者
-
Chen Meng
Institute Of Information Science Academia Sinica
-
Chen Meng
Institute Of Mathematics Fudan University
関連論文
- Traffic Engineering for Provisioning Restorable Hose-Model VPNs(Networking Technologies for Overlay Networks)
- Inequalities of Noether type for 3-folds of general type