LMI-Based Mixed H_2/H_∞ Controller Design with Regional Pole Constraints for Damping Power System Oscillations
スポンサーリンク
概要
- 論文の詳細を見る
This paper presents the mixed H2/H∞ controller design with regional pole constraints for damping power system oscillations. The state feedback gain can be obtained by solving a linear matrix inequality (LMI) feasibility problem that robustly assigns the closed-loop poles in a prescribed LMI region. The proposed technique is illustrated with applications to the design of stabilizer for a typical single-machine infinite-bus (SMIB) and a multimachine power system. The LMI-based control ensures adequate damping for widely varying system operating conditions. The simulation results illustrate the effectiveness and robustness of the proposed stabilizer.
- 社団法人 電気学会の論文
- 2004-07-01
著者
-
IRISAWA Juichi
Department of Electrical Engineering Technological University of Nagaoka
-
Furuya Seizo
Department Of Electrical Engineering Nagaoka University Of Technology
-
Irisawa J
Department Of Electrical Engineering Nagaoka University Of Technology
-
Furuya Seizo
Department Of Electrical And Electronic Engineering Faculty Of Engineering Tokyo Institute Of Techno
関連論文
- PULSED, HIGH REPETITION AND HIGH VOLTAGE POWER SOURCE
- Bremsstrahlung Rates in Fully Ionized Gases in a Magnetic Field
- Simulation of Nonlinear Coaxial Line Using Ferrite Beads
- Powder Flow Z-pinch as a New Scheme of Z-pinch
- A Robust H_2 Output Feedback Controller Design for Damping Power System Oscillations : An LMI Approach
- LMI-Based Mixed H_2/H_∞ Controller Design with Regional Pole Constraints for Damping Power System Oscillations
- LMI-Based Robust H_2 Controller Design for Damping Oscillations in Power Systems
- Surge Impedance of Non-Linear Coaxial Line Using Ferrite Beads
- OPTIMAL POWER SYSTEM STABILIZATION VIA OUTPUT FEEDBACK EXCITATION CONTROL
- THE DYNAMIC STABILITY IMPROVEMENT OF MULTIMACHINE POWER SYSTEMS BY MULTILEVEL OPTIMAL CONTROL
- Fast Small Signal Stability Assessment of Large Power Systems
- Characteristics of Multichannel Arc Gap
- Surge Impedance of Nonlinear Coaxial Line Using Ferrite Beads
- Breakdown Characteristics of Porous Metals
- Rail Gap Switch Using Porous Metal as Electrode