Universal functions on Stein manifolds
スポンサーリンク
概要
- 論文の詳細を見る
We study universal holomorphic functions on a Stein manifold M with projective compactification. Let {\varphi<SUB>n</SUB>} be a sequence of holomorphic automorphisms of M. We prove that if {\varphi<SUB>n</SUB><SUP>-1</SUP>} is A run-away, then the set of all universal functions with respect to {\varphi<SUB>n</SUB>} in \mathscr{A}(K) for all compact subsets K with a certain property is the intersection of countable number of open dense subsets in the space of all holomorphic functions on M. We also note that there is a close connection between the direction of run-awayness and a family of compact sets for which there exists a universal function.
- 社団法人 日本数学会の論文
- 2004-01-01
著者
-
Abe Yukitaka
Department Of Mathematics Toyama University
-
Abe Yukitaka
Departement De Mathematiques Universite De Toyama
-
ZAPPA Paolo
Dipartimento di Matematica Universita di Perugia
関連論文
- Domains over A K-complete manifold
- Universal functions on Stein manifolds
- Elliptic differential operators with respect to a subbundle of the tangent bundle
- Sur les fonctions periodiques de plusieurs variables
- Homomorphisms of toroidal groups
- A statement of Weierstrass on meromorphic functions which admit an algebraic addition theorem
- Sur les fonctions periodiques de plusieurs variables II (reduction au cas defini positif)
- A remark on Levi foliations
- ON QUASI-ABELIAN VARIETIES OF KIND $ k $
- MEROMORPHIC REDUCTION OF COMPLEX LIE GROUPS