Role of Radiation-Induced Grain Boundary Segregation in Irradiation Assisted Stress Corrosion Cracking
スポンサーリンク
概要
- 論文の詳細を見る
Isolation of microstructural and microchemical effects on irradiation assisted stress corrosion cracking (IASCC) was attempted by means of low-dose high-temperature neutron irradiation in a material test reactor to get better understanding on IASCC. Microstructure, grain boundary segregation, hardness and SCC susceptibility were examined on stainless steels irradiated to 0.8 dpa at around 673 K. The irradiation caused well-developed grain boundary segregation without notable hardening or microstructural changes. No IASCC was found in 593 K hydrogenated water whereas the steels were highly susceptible to IASCC in 561 K oxygenated water. The results suggest that grain boundary segregation, probably Cr depletion, is sufficient to cause IASCC in oxygenated water and that other radiation-induced changes such as microstructure and hardening are required for IASCC in hydrogenated water.
- 社団法人 日本原子力学会の論文
- 2004-05-25
著者
-
FUKUYA Koji
Institute of Nuclear Safety System, Inc.
-
Fukuya K
Inst. Of Nuclear Safety System
-
Fukuya Koji
Institute Of Nuclear Safety System
-
FUJII Katsuhiko
Institute of Nuclear Safety System
-
TORIMARU Tadahiko
Nippon Nuclear Fuel Development
-
NAKANO Morihito
Institute of Nuclear Safety System
-
Fukuya K
Institute Of Nuclear Safety System
-
Fukuya Kohji
Institute Of Nuclear Safety System
-
Nakano Morihito
Institute Of Nuclear Safety System Inc.
-
Fujii K
Institute Of Nuclear Safety System
関連論文
- Corrosion Behavior of Stainless Steels in Simulated PWR Primary Water : Effect of Chromium Content in Alloys and Dissolved Hydrogen
- Angular Distribution of Slip Steps by Three-Dimensional Polycrystalline Model for Stainless Steel
- Evolution of Microstructure and Microchemistry in Cold-worked 316 Stainless Steels under PWR Irradiation
- IASCC Initiation in Highly Irradiated Stainless Steels under Uniaxial Constant Load Conditions
- Effects of Dissolved Hydrogen and Strain Rate on IASCC Behavior in Highly Irradiated Stainless Steels
- Deformation Structure in Highly Irradiated Stainless Steels
- Separation of Microstructural and Microchemical Effects in Irradiation Assisted Stress Corrosion Cracking using Post-irradiation Annealing
- IASCC Susceptibility and Slow Tensile Properties of Highly-irradiated 316 Stainless Steels
- Role of Radiation-Induced Grain Boundary Segregation in Irradiation Assisted Stress Corrosion Cracking
- A Multicomponent Model of Radiation-induced Segregation for Commercial Stainless Steels
- Grain Boundary Phosphorus Segregation in Thermally Aged Low Alloy Steels
- Segregation Behavior Induced by Various Particle Irradiations in Austenitic Stainless Steels
- Calculation of Gamma Induced Displacement Cross-sections of Iron Considering Positron Contribution and Using Standard Damage Model
- Development of Micro Tensile Testing Method in an FIB System for Evaluating Grain Boundary Strength
- Microstructural Characterization of SCC Crack Tip and Oxide Film for SUS 316 Stainless Steel in Simulated PWR Primary Water at 320℃
- Calculation of Gamma Induced Displacement Cross-sections of Iron Considering Positron Contribution and Using Standard Damage Model
- Grain Boundary Phosphorus Segregation in Thermally Aged Low Alloy Steels