Diophantine approximations for a constant related to elliptic functions
スポンサーリンク
概要
- 論文の詳細を見る
This paper is devoted to the study of rational approximations of the ratio η(λ)/omega(λ), where omega(λ) and η(λ) are the real period and real quasi-period, respectively, of the elliptic curve y<SUP>2</SUP>=x(x-1)(x-λ). Using monodromy principle for hypergeometric function in the logarithm case we obtain rational approximations of (η/omega)(λ) with λ∈ \bm{Q} and we shall find new measures of irrationality, both in the archimedean and non archimedean case.
- 社団法人 日本数学会の論文
- 2001-10-01
著者
-
Huttner Marc
Ufr De Mathematiques Umr Agat Cnrs Universite Des Sciences Et Technologies De Lille
-
Huttner Marc
Ufr De Mathematiques Ura D751 Au Cnrs Universite De Lille I
-
MATALA-AHO Tapani
Matemaattisten tieteiden Laitos
-
HUTTNER Marc
UFR de Mathématiques UMR AGAT CNRS Université des Sciences et Technologies de Lille
関連論文
- Diophantine approximations for a constant related to elliptic functions
- On a paper of Hermite and Diophantine Approximation of Abelian Integrals (Analytic Number Theory : Expectations for the 21st Century)
- On q-analoques of divergent and exponential series
- Differential equations and rational approximations of polylogarithms (New Aspects of Analytic Number Theory)