Feuilletages et topologie spectrale
スポンサーリンク
概要
- 論文の詳細を見る
Let \mathscr{F} be a codimension-one foliation, transversally oriented, of class C<SUP>r</SUP> (r≥q 0) on a connected closed manifold M. The class of a leaf F of \mathscr{F} is defined to be the union of all leaves G with overline{F}=overline{G}. Let X be the space of classes of leaves in M and let X<SUB>0</SUB> be the union of open subsets of X which are homeomorphic to \bm{R} or to S<SUP>1</SUP>. In this paper we prove that if the level of \mathscr{F} is well defined (in the sense of [{12}]), then X-X<SUB>0</SUB> is a spectral space.
- 社団法人 日本数学会の論文
著者
-
Echi Othman
Department Of Mathematics College Of Teachers Riyadh
-
BOUACIDA Ezzeddine
Departement de Mathematiques Faculte des Sciences de Sfax
-
SALHI Ezzeddine
Departement de Mathematiques Faculte des Sciences de Sfax