Neural Networks in Materials Science
スポンサーリンク
概要
- 論文の詳細を見る
There are difficult problems in materials science where the general concepts might be understood but which are not as yet amenable to scientific treatment. We are at the same time told that good engineering has the responsibility to reach objectives in a cost and time-effective way. Any model which deals with only a small part of the required technology is therefore unlikely to be treated with respect. Neural network analysis is a form of regression or classification modelling which can help resolve these difficulties whilst striving for longer term solutions. This paper begins with an introduction to neural networks and contains a review of some applications of the technique in the context of materials science.
- 社団法人 日本鉄鋼協会の論文
著者
関連論文
- 溶接部の特性予測のためのベイジアンニュートラルネットワークモデル
- Nb含有フェライト系ステンレス鋼の再結晶温度におよぼすFe_2Nbラーベス相の影響
- ベイジアンニューラルネットワークによるNi基超合金のクリープ破断寿命の予測
- Fe-Mo-C3元系合金におけるMo_2Cの析出モデル
- Neural Networks in Materials Science
- マルテンサイトの焼戻しにおけるV_4C_3炭化物析出のモデリング
- Acceleration of Low-temperature Bainite
- Development of Hard Bainite
- Problems in the Calculation of Transformation Texture in Steels
- TRIP-Assisted Steels?