Complex varieties of general type whose canonical systems are composed with pencils
スポンサーリンク
概要
- 論文の詳細を見る
This paper aims to study a variety of general type whose canonical system is composed with a pencil. This kind of variety admits a natural fibration onto a nonsingular curve. A natural problem is whether the geometric genus of the general fiber of this fibration is bounded. A simple classification is given in this paper. When the object is a nonsingular minimal 3-fold of general type, if the canonical system is composed of an irrational pencil, then the geometric genus of the general fibre is bounded. If the canonical system is composed of a rational pencil, it seems that the geometric genus of the general fibre is not bounded though no counter examples have been found.
- 社団法人 日本数学会の論文
著者
関連論文
- Metal-mediated Supramolecular Coordination Polyelectrolyte Films of Bisterpyridine Ligand at the Air-Water Interface
- Reproduction and Estuarine Utilization of the Grey Mullet, Liza macrolepis (Smith, 1846), in the Area of Kaohsiung Harbor, Southern Taiwan
- On pluricanonical maps for threefolds of general type
- Complex varieties of general type whose canonical systems are composed with pencils