Acceleration Mechanism of Vertical Displacement Event and its Amelioration in Tokamak Disruptions
スポンサーリンク
概要
- 論文の詳細を見る
Vertical displacement events (VDEs), which are frequently observed in disruptive discharges of elongated tokamaks, are investigated using the Tokamak Simulation Code. We show that disruption events such as a sudden plasma pressure drop (βp collapse) and the subsequent plasma current quench (Ip, quench) can accelerate VDEs due to the adverse destabilizing effect of the resistive shell, which has previously been thought to stabilize VDEs. In a tokamak with a surrounding shell which is asymmetric with respect to the geometric mid-plane, the Ip quench also causes an additional VDE acceleration due to the vertical imbalance of the attractive force. While the shell-geometry characterizes the VDE dynamics, the growth rate of VDEs depends strongly on the magnitude of the βp collapse, the speed of the Ip quench and the n-index of the plasma equilibrium just before the disruption. An amelioration of Ip quench-induced VDEs was experimentally established in the JT-60U tokamak by optimizing the vertical location of the plasma just prior to the disruption. The JT-60U vacuum vessel is shown to be suitable for preventing the βp collapse-induced VDE.
- 社団法人 日本原子力学会の論文
- 1996-08-25
著者
-
YOSHINO Ryuji
Naka Fusion Research Establishment, Japan Atomic Energy Research Institute
-
Jardin Stephen
Princeton Plasma Physics Laboratory Princeton University
-
Yoshino Ryuji
Naka Fusion Research Establishment Japan Atomic Energy Research Institute
-
NAKAMURA Yukiharu
Naka Fusion Research Establishment, Japan Atomic Energy Research Institute
-
POMPHREY Neil
Princeton Plasma Physics Laboratory, Princeton University
-
Nakamura Yukiharu
Naka Fusion Research Establishment Japan Atomic Energy Research Institute
-
Pomphrey Neil
Princeton Plasma Physics Laboratory Princeton University
-
Jardin Stephen
Princeton Plasma Physics Laboratory
関連論文
- Magnetic Field Analysis during Breakdown Phase in the Low Loop Resitance Tokamak HT-2
- VDE Characteristics during Disruption Process and its Underlying Acceleration Mechanism in the ITER-EDA Tokamak
- Acceleration Mechanism of Vertical Displacement Event and its Amelioration in Tokamak Disruptions
- Positional Instabilities in an Iron-Cored Tokamak
- Transient Coaxial Helicity Injection Plasma Start-up in NSTX and CHI Program Plans on NSTX-U