スポンサーリンク
マラ工科大学 | 論文
- 立体図形が球に外接するための条件について
- Some Characterizations of the Pseudo Inverse Map of Matrices
- 3次元ユークリッド空間におけるニュートンの定理の拡張について
- 円に外接する四辺形に関するニュートンの定理の三次元ユークリッド空間への岡の方法による二つの拡張
- 四面体の外接球の半径について
- ラオスにおける教育調査--数学教育の立場から
- 四面体の隣り合う面のなす角の和の取り得る範囲について
- 球面三角形における一つの不等式について
- 三角形における垂心の四面体への拡張について
- On a Geometrical Property with the Minimal Length Problem of the Segments Composed of n Fixed Points and One Moving Point
- 立方体の頂点と2個の動点を結んでできる線分の和の最小値について
- 平面上の線分の和の最小値について : 1個の動点と5個の定点の場合
- 三面角に関わる角の間の関係と球面三角形の面積
- 三面角に対して拡張された角の二等分線の作図(IV 高専・大学部会,第92回全国算数・数学教育研究(新潟)大会 第59回北陸四県数学教育研究(新潟)大会 平成22年度新潟県高等学校教育研究会数学部会 日本数学教育学会第92回総会)
- 4面体の隣り合う面のなす角の和の取り得る範囲について(高専・大学,第91回全国算数・数学教育研究(京都)大会第56回近畿算数・数学教育研究(京都)大会日本数学教育学会第91回総会)
- 円周角の球面への拡張について(2)(高専・大学,第91回全国算数・数学教育研究(京都)大会第56回近畿算数・数学教育研究(京都)大会日本数学教育学会第91回総会)
- エルデスの不等式について(2)(高専・大学,第90回全国算数・数学教育研究(福島)大会第57回東北地区算数・数学教育研究(福島)大会第46回福島県高等学校教育研究会数学部会日本数学教育学会第90回総会)
- 19 フォイエルバッハの定理の四面体への拡張の可能性について(高専・大学,第88回全国算数・数学教育研究(東京)大会第61回関東都県算数・数学教育研究(東京)大会日本教育学会第88回総会)
- 18 三次元ユークリッド空間へ拡張されたチェバの定理とチェバの逆定理の応用について(高専・大学,第88回全国算数・数学教育研究(東京)大会第61回関東都県算数・数学教育研究(東京)大会日本教育学会第88回総会)
- 18 円周角の球への拡張と一つの不等式(第1分科会 教育課程,IV.高専・大学部会,第87回総会特集号)