Matsuo Takayasu | Department Of Computational Science & Engineering Graduate School Of Engineering Nagoya Universi
スポンサーリンク
概要
- MATSUO Takayasuの詳細を見る
- 同名の論文著者
- Department Of Computational Science & Engineering Graduate School Of Engineering Nagoya Universiの論文著者
関連著者
-
Matsuo Takayasu
Department Of Computational Science & Engineering Graduate School Of Engineering Nagoya Universi
-
松尾 宇泰
東京大学大学院情報理工学系研究科
-
室田 一雄
東京大学
-
室田 一雄
京都大学
-
相島 健助
東京大学大学院情報理工学系研究科数理情報学専攻
-
相島 健助
東京大学大学院情報理工学系研究科
-
Murota Kazuo
Department Of Mathematical Engineering And Instrumentation Physics Faculty Of Engineering University
-
AISHIMA Kensuke
Department of Mathematical Informatics Graduate School of Information Science and Technology Univers
-
FURIHATA Daisuke
Cybermedia Center, Graduate School of Science, Osaka University
-
Furihata Daisuke
Cybermedia Center Graduate School Of Science Osaka University
-
Murota Kazuo
Department Of Mathematical Informatics Graduate School Of Information Science And Technology Univers
-
室田 一雄
Department Of Mathematical Informatics Graduate School Of Information Science And Technology Univers
-
室田 一雄
東京大学:prest:jst
-
Mori Masatake
Department Of Applied Physics Faculty Of Engineering University
-
Sugihara Masaaki
Department Of Computational Science & Engineering Graduate School Of Engineering Nagoya Universi
-
Matsuo Takayasu
Department Of Computational Science And Engineering Nagoya University
-
Furihata Daisuke
Cybermedia Center Osaka University
-
Aishima Kensuke
Department Of Mathematical Informatics Graduate School Of Information Science And Technology Univers
-
MORI Masatake
Department of Mathematical Science, Tokyo Denki University
-
Yaguchi Takaharu
Department of Computational Science, Graduate School of System Informatics, Kobe University
-
Miyatake Yuto
Department of Mathematical Informatics, Graduate School of Information Science and Technology, The University of Tokyo
著作論文
- Rigorous Proof of Cubic Convergence for the dqds Algorithm for Singular Values
- Spatially Accurate Dissipative or Conservative Finite Difference Schemes Derived by the Discrete Variational Method
- A Stable, Convergent, Conservative and Linear Finite Difference Scheme for the Cahn-Hilliard Equation
- A multi-symplectic integration of the Ostrovsky equation
- A note on the dqds algorithm with Rutishauser's shift for singular values