Tamura Takeyuki | Bioinformatics Center Institute For Chemical Research Kyoto University
スポンサーリンク
概要
- TAMURA Takeyukiの詳細を見る
- 同名の論文著者
- Bioinformatics Center Institute For Chemical Research Kyoto Universityの論文著者
関連著者
-
Tamura Takeyuki
Bioinformatics Center Institute For Chemical Research Kyoto University
-
Akutsu Tatsuya
Bioinformatics Center Inst. For Chemical Res. Kyoto Univ.
-
Akutsu Tatsuya
Bioinformatics Center Institute For Chemical Research Kyoto University
-
TAMURA Takeyuki
Bioinformatics Center, Institute for Chemical Research, Kyoto University
-
伊藤 大雄
京都大学大学院情報学研究科通信情報システム専攻
-
伊藤 大雄
Ntt通信網研究所
-
伊藤 大雄
豊橋技術科学大学
-
Akutsu Tatsuya
Kyoto Univ. Kyoto‐shi Jpn
-
Akutsu Tatsuya
Bioinformatics Center, Institute for Chemical Research, Kyoto University
-
Ito H
Kyoto University
-
Ito Hiro
School Of Informatics Kyoto University
-
Ito Hiro
京大
-
Ching Wai-ki
Department Of Mathematics The University Of Hong Kong
-
Ito Hiro
Kyoto Univ. Kyoto‐shi Jpn
-
Ito H
Tokyo Inst. Of Technol. Yokohama‐shi Jpn
-
Ito Hiro
The Graduate School Of Informatics Kyoto University
-
ITO Hiro
Toyohashi University of Technology
-
Hayashida Morihiro
Bioinformatics Center Inst. For Chemical Res. Kyoto Univ.
-
Jiang Hao
Department Of Bioprocess Development
-
Cong Yang
Advanced Modeling And Applied Computing Laboratory Department Of Mathematics The University Of Hong Kong
-
Ching Wai-ki
Advanced Modeling And Applied Computing Laboratory Department Of Mathematics The University Of Hong Kong
-
ZHAO Yang
Bioinformatics Center, Institute for Chemical Research, Kyoto University
-
JIANG Hao
Department of Mathematics, Renmin University of China
著作論文
- Approximation Algorithms for Optimal RNA Secondary Structures Common to Multiple Sequences(Discrete Mathematics and Its Applications)
- Inferring pedigree graphs from genetic distances
- Detecting a Singleton Attractor in a Boolean Network Utilizing SAT Algorithms
- Exact Algorithms for Finding a Minimum Reaction Cut under a Boolean Model of Metabolic Networks
- On Finding a Fixed Point in a Boolean Network with Maximum Indegree 2
- An Efficient Method of Computing Impact Degrees for Multiple Reactions in Metabolic Networks with Cycles
- Integer Programming-Based Approach to Attractor Detection and Control of Boolean Networks
- On the Complexity of Inference and Completion of Boolean Networks from Given Singleton Attractors