吉野 正史 | 広島大学理学研究科
スポンサーリンク
概要
関連著者
-
吉野 正史
広島大学理学研究科
-
吉野 正史
中央大学経済学部
-
三宅 正武
名古屋大学大学院多元数理科学研究科
-
吉野 正史
東京都立大学
-
吉野 正史
都立大学理学部数学
-
吉野 正史
Department of Mathematics, Nice University
著作論文
- Toeplitz operator theory and Hilbert factorization applied to the Fredholmness of PDE(Complex Analysis and Differential Equations)
- Riemann-Hilbert factorization and Fredholm property of differential operators
- WEINER-HOPF EQUATION AND FREDHOLM PROPERTY OF THE GOURSAT PROBLEM IN GEVREY SPACES(Microlocal Geometry)
- SINGULAR PARTIAL DIFFERENTIAL EQUATIONS WITH RESONANCE AND SMALL DENOMINATORS(Algebraic, Analytic and Geometric Aspects of Complex Differential Equations and their Deformations. Painleve Hierarchies)
- WKB ANALYSIS TO NORMAL FORM THEORY OF VECTOR FIELDS (Microlocal Analysis and Related Topics)
- WKB ANALYSIS AND POINCARE'S THEOREM (Recent Trends in Exponential Asymptotics)
- MOSER'S QUESTION ON A SIMULTANEOUS APPROXIMATION OF A SET OF NUMBERS AND A SIMULTANEOUS NORMAL FORMS OF MAPS (Diophantine phenomena in differential equations and dynamical systems)
- Singular solutions of Nonlinear Fuchsian Equations and Applications to Normal Form Theory (微分方程式の変形と漸近解析 短期共同研究報告集)
- Fuchsian PDE with applications to normal forms of resonant vector fields (Microlocal Analysis and Related Topics)
- Solvability of mixed Monge-Ampere equations and Riemann-Hilbert factorizations (Exact steepest descent method)
- Solvability of mixed Monge-Ampere equations and Riemann-Hilbert factorizations (Microlocal Analysis and Related Topics)
- ベクトル場の同時標準形とSeifert予想への応用(Painleve系, 超幾何系, 漸近解析)
- Convergence of formal solutions of fully nonlinear equations of Monge-Ampere type(Exact WKB Analysis and Fourier Analysis in the Complex Domain)
- Normal Forms of Vector Fields and Diffeomorphisms(Algebraic Analysis of Singular Perturbations)
- Existence of periodic solutions and Sokes coefficients for ODE(Algebraic Manipulation for Differential Equations)
- 発散する形式解の特徴づけについて(超函数と微分方程式)
- すべての形式解が収束するための必要十分条件について(超局所解析と大域解析)
- 確定特異点型の方程式のsmall divisionについて(代数解析学)