Terao Hiroaki | Department Of Mathematics University Of Wisconsin
スポンサーリンク
概要
関連著者
-
寺尾 宏明
北海道大学理学部数学科
-
Terao Hiroaki
International Christian University
-
Terao Hiroaki
Department Of Mathematics International Christian University
-
Terao Hiroaki
Department Of Mathematics University Of Wisconsin
-
Terao Hiroaki
Mathematics Department University Of Wisconsin
-
寺尾 宏明
国際基督教大学(ICU)
-
Orlik Peter
Mathematics Department, University of Wisconsin
-
Orlik Peter
Mathematics Department University Of Wisconsin
-
Lee Ki-Suk
Department of Mathematics, University of Wisconsin
-
Yuzvinsky Sergey
Department of Mathematics, University of Oregon
-
Lee Ki-suk
Department Of Mathematics University Of Wisconsin
-
寺尾 宏明
国際基督大学教養学部理学科
-
Yuzvinsky Sergey
Department Of Mathematics University Of Oregon
-
寺尾 宏明
北海道大学大学院理学研究院
著作論文
- Chambers of arrangements of hyperplanes and Arrow's impossibility theorem
- Primitive filtrations of the modules of invariant logarithmic forms of Coxeter arrangements
- Coxeter arrangements are hereditarily free
- Commutative algebras for arrangements
- The logarithmic forms of $k$-generic arrangements
- Logarithmic forms on affine arrangements
- The Jacobians and the discriminants of finite reflection groups
- Reflection Groups, Combinatorics and Multi-Derivations
- Factorizations of the Orlik-Solomon Algebras(Combinatorial Theory and Related Topics)
- 超平面配置入門 : 特に、自由超平面配置について (Recent Topics on Real and Complex Singularities)
- Invariants of Unitary Reflection Groups
- 鏡映群の基本不変式のヤコビアンについての一注意(Analytic Varieties および Stratified spaces における諸問題)
- アレンジメントの特性多項式とlogarithmic multi vector fields(複素解析的特異点と可換環)
- On the discriminant and the bifurcation set(Singularities in Complex Analytic Geometry)
- New Exponents and Betti Numbers of Complement of Hyperplanes (Complex Analysis of Singularities)
- Discriminant of a holomorphic map and logarithmic vector fields
- A primitive derivation and logarithmic differential forms of Coxeter arrangements
- On Betti Numbers of Complement of Hyperplanes
- Ranking patterns of unfolding models of codimension one
- The Shi arrangement of the type D