石毛 和弘 | 東北大学大学院理学研究科
スポンサーリンク
概要
関連著者
-
石毛 和弘
東北大学大学院理学研究科
-
壁谷 喜継
大阪府立大学工学研究科
-
石毛 和弘
名古屋大学大学院多元数理科学研究科
-
壁谷 喜継
大阪府立大学大学院工学研究科
-
石毛 和弘
東北大学理学研究科
-
石毛 和弘
Department of Mathematics, Faculty of Science Tokyo Institute of Technology
-
溝口 紀子
東京学芸大学教育学部
-
石渡 通徳
室蘭工業大学
-
石渡 通徳
福島大学共生システム理工学類
-
溝口 紀子
東京学芸大学・jst
-
村田 實
東京工業大学理工学研究科
-
石毛 和弘
東北大学情報科学研究科
-
川上 竜樹
東北大学理学研究科
-
石毛 和弘
Mathematical Institute, Tohoku University
-
柳下 浩紀
東京理科大学理工学部
-
柳下 浩紀
東京大学数理科学研究科
-
村田 實
東京工業大学大学院理工学研究科
著作論文
- 熱方程式の解の最大点挙動について
- Topics on the movement of Hot Spots for the Heat Equation with a Potential (New Developments of Functional Equations in Mathematical Analysis)
- Decay Rates of the Derivatives of the Solutions of the Heat Equations and Related Topics(Variational Problems and Related Topics)
- PARABOLIC EQUATIONS WHOSE NONNEGATIVE IN A CYLINDER ARE DETERMINED ONLY BY THEIR INITIAL VALUES(Potential Theory and its Related Fields)
- On the Heat Equation in a Half-Space with a Nonlinear Boundary Condition (Variational Problems and Related Topics)
- Movement of Hot Spots of the Solutions for the Heat Equation with a Potential(Potential Theory and its Related Fields)
- Movement of Hot Spots on the Exterior Domain of a Ball (Dynamics of spatio - temporal patterns for the system of reaction - diffusion equations)
- On the Existence of Solutions of the Cauchy Problem for a Nonlinear Diffusion Equation(Variational Problems and Related Topics)
- The Gradient Theory of the Phase Transitions in Cahn-Hilliard Fluids with the Dirichlet boundary conditions(Mathematical Analysis of Phenomena in Fluid and Plasma Dynamics)
- 非線形熱方程式の爆発問題について
- Blow-up profile for a nonlinear heat equation with the Neumann boundary condition (Evolution Equations and Asymptotic Analysis of Solutions)
- BLOW-UP PROBLEMS FOR SEMILINEAR HEAT EQUATIONS WITH LARGE DIFFUSION (Nonlinear Diffusive Systems and Related Topics)
- BLOW-UP TIME AND BLOW-UP SET OF THE SOLUTIONS FOR SEMILINEAR HEAT EQUATIONS WITH LARGE DIFFUSION (Variational Problems and Related Topics)
- Decay estimates of a nonnegative Schrodinger heat semigroup (Nonlinear evolution equations and related topics to mathematical analysis of a phenomena)
- Heat equation with a singular potential on the boundary and the trace-Hardy inequality (Progress in Variational Problems : Variational Methods in the Study of Evolution Equations)
- $L^p$ norms of nonnegative Schrodinger heat semigroup and the large time behavior of hot spots (Stochastic Processes and Statistical Phenomena behind PDEs)
- Global Solutions for a Semilinear Heat Equation in the Exterior Domain of a Compact Set (Geometric Aspect of Partial Differential Equations and Conservation Laws)