A computational investigation of H2 adsorption and dissociation on Au nanoparticles supported on TiO2 surface
スポンサーリンク
概要
- 論文の詳細を見る
The specific role played by small gold nanoparticles supported on the rutile TiO2(110) surface in the processes of adsorption and dissociation of H2 is discussed. It is demonstrated that the molecular and dissociative adsorption of H2 on Au_[n] clusters containing n = 1, 2, 8 and 20 atoms depends on cluster size, geometry structure, cluster flexibility and the interaction with the support material. Rutile TiO2(110) support energetically promotes H2 dissociation on gold clusters. It is demonstrated that the active sites towards H2 dissociation are located at corners and edges on the surface of the gold nanoparticle in the vicinity of the support. The low coordinated oxygen atoms on the TiO2(110) surface play a crucial role for H2 dissociation. Therefore the catalytic activity of a gold nanoparticle supported on the rutile TiO2(110) surface is proportional to the length of the perimeter interface between the nanoparticle and the support.
- Royal Society of Chemistryの論文
Royal Society of Chemistry | 論文
- Reactions of excited-state benzophenone ketyl radical in a room-temperature ionic liquid
- Ultrathin tough double network hydrogels showing adjustable muscle-like isometric force generation triggered by solvent
- Motion of methanol adsorbed in porous coordination polymer with paramagnetic metal ions
- Hyperbranched 5,6-glucan as reducing sugar ball
- Stereoselective tris-glycosylation to introduce β-(1→3)-branches into gentiotetraose for the concise synthesis of phytoalexin-elicitor heptaglucoside