Realization of a Knill-Laflamme-Milburn controlled-NOT photonic quantum circuit combining effective optical nonlinearities
スポンサーリンク
概要
- 論文の詳細を見る
Quantum information science addresses how uniquely quantum mechanical phenomena such as superposition and entanglement can enhance communication, information processing, and precision measurement. Photons are appealing for their low noise, light-speed transmission and ease of manipulation using conventional optical components. However, the lack of highly efficient optical Kerr nonlinearities at single photon level was a major obstacle. In a breakthrough, Knill, Laflamme, and Milburn (KLM) showed that such an efficient nonlinearity can be achieved using only linear optical elements, auxiliary photons, and measurement [(2001) Nature 409:46-52]. KLM proposed a heralded controlled-NOT (CNOT) gate for scalable quantum computation using a photonic quantum circuit to combine two such nonlinear elements. Here we experimentally demonstrate a KLM CNOT gate. We developed a stable architecture to realize the required four-photon network of nested multiple interferometers based on a displaced-Sagnac interferometer and several partially polarizing beamsplitters. This result confirms the first step in the original KLM 'recipe' for all-optical quantum computation, and should be useful for on-demand entanglement generation and purification. Optical quantum circuits combining giant optical nonlinearities may find wide applications in quantum information processing, communication, and sensing.
- 2011-06-21
論文 | ランダム
- 月科学と月探査 : 今後の展望(月科学の最先端と今後の展望:月はどこまでわかったのか?)
- 4.超臨界流体の誘電・放電・プラズマ特性(超臨界流体中プラズマの基礎と応用)
- 次世代コンテンツの動向と記録メディアへの期待(記録システムおよび一般)
- 環境会計の史的研究
- 留学生としての私の日本での経験(第II部 若手研究者による各国の経緯・現况の概観,外国人研究者が語る諸外国の工学研究・教育事情)