Realization of a Knill-Laflamme-Milburn controlled-NOT photonic quantum circuit combining effective optical nonlinearities
スポンサーリンク
概要
- 論文の詳細を見る
Quantum information science addresses how uniquely quantum mechanical phenomena such as superposition and entanglement can enhance communication, information processing, and precision measurement. Photons are appealing for their low noise, light-speed transmission and ease of manipulation using conventional optical components. However, the lack of highly efficient optical Kerr nonlinearities at single photon level was a major obstacle. In a breakthrough, Knill, Laflamme, and Milburn (KLM) showed that such an efficient nonlinearity can be achieved using only linear optical elements, auxiliary photons, and measurement [(2001) Nature 409:46-52]. KLM proposed a heralded controlled-NOT (CNOT) gate for scalable quantum computation using a photonic quantum circuit to combine two such nonlinear elements. Here we experimentally demonstrate a KLM CNOT gate. We developed a stable architecture to realize the required four-photon network of nested multiple interferometers based on a displaced-Sagnac interferometer and several partially polarizing beamsplitters. This result confirms the first step in the original KLM 'recipe' for all-optical quantum computation, and should be useful for on-demand entanglement generation and purification. Optical quantum circuits combining giant optical nonlinearities may find wide applications in quantum information processing, communication, and sensing.
- 2011-06-21
論文 | ランダム
- 技術レポート インマルサットFleet F77周辺ネットワークと船上評価 (海上機器特集)
- 臨床において「ものがたり」を読むということ
- 日常性に根ざした学校臨床 : スクールカウンセリングにおけるサイコリトリートとしての自由開放の試み
- 北海道 阿寒湖温泉 ホテル「鶴雅」のPOPで売店復活物語--遊び心いっぱいの手づくりPOPを売場のあらゆるところに付けたら月商1000万円アップ・昨年対比120%! (特集 誰でも今日からできます POPで増やす年商1億円)
- 阿寒湖の珪藻(9)羽状類-縦溝類:Amphora,Epithemia,Rhopalodia