Structure of Au(111) and Au(100) Single-Crystal Electrode Surfaces at Various Potentials in Sulfuric Acid Solution Determined by In Situ Surface X-ray Scattering
スポンサーリンク
概要
- 論文の詳細を見る
Potential-dependent surface structures of Au(111) and Au(100) single-crystal electrodes in a 50 mM H2SO4 solution were investigated at an atomic level using in situ surface X-ray scattering (SXS) techniques. It was confirmed that both the Au(111) and Au(100) surfaces were reconstructed with an attached submonolayer of an oxygen species, most probably water, at 0 V (vs Ag/AgCl). Results at +0.95 V supported a previously suggested model for both the Au(111) and the Au(100) electrodes that, based on infrared and scanning tunneling microscopy measurements, the surfaces were a (1 x 1) structure with the coadsorbed sulfate anion and hydronium cation (H3O+). At +1.05 V, where a small amount of an anodic current flowed, adsorption of a monolayer of oxygen species was observed on both surfaces. When the single-crystal gold electrodes were electrochemically oxidized at +1.40 V, the expansion of the gold surface by about one monolayer of Au atoms was observed, suggesting the penetration of oxygen into the surface gold layers (i.e., the formation of two layers of surface oxide). When the surface oxide was reduced at +0.65 V, the surface structure returned back to the structure observed at +0.95 V before the oxide formation (i.e., a (1 x 1) structure with coadsorbed sulfate anion and H3O+). When the potential was reduced to 0 V, the surfaces were reconstructed again but with slightly more random structures than those before the potential cycle.
- American Chemical Societyの論文
- 2007-09-06
American Chemical Society | 論文
- In situ Real-time Monitoring of Electrochemical Ag Deposition on a Reconstructed Au(111) Surface Studied by Scanning Tunneling Microscopy
- Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds
- Preparation of Polycrystalline TiO2 Photocatalysts Impregnated with Various Transition Metal Ions : Characterization and Photocatalytic Activity for the Degradation of 4-Nitrophenol
- In situ Real-time Monitoring of Electrochemical Ag Deposition on a Reconstructed Au(111) Surface Studied by Scanning Tunneling Microscopy
- Mechanism of photocatalytic production of active oxygens on highly crystalline TiO2 particles by means of chemiluminescent probing and ESR spectroscopy