On the Galois actions on torsors of paths I, Descent of Galois representations
スポンサーリンク
概要
- 論文の詳細を見る
We are studying representations obtained from actions of Galois groups on torsors of paths on a projective line minus a finite number of points. Using these actions on torsors of paths, we construct geometrically representations of Galois groups which realize $\ell$-adically the associated graded Lie algebra of the fundamental group of the tannakian category of mixed Tate motives over ${\rm Spec}\, \Zbb$, ${\rm Spec}\, \Zbb [i]$, ${\rm Spec}\, \Zbb [\frac{1}{q}]$, ${\rm Spec}\,\Oc _{\Qbb ( \sqrt {-q})}$ for any prime number $q$ ($q\neq 2$ in the last case) and over ${\rm Spec}\,\Oc _{\Qbb ( \sqrt {-q})}[\frac{1}{q}]$ for any prime number $q$ congruent to $3$ modulo $4$ and also for $q=2.$
- 2007-08-27
論文 | ランダム
- 逆転磁場ピンチプラズマの周辺部における揺動計測
- 逆転磁場ピンチプラズマ中の荷電粒子の異常輸送の数値計算
- 高速度カメラのディジタル化とプラズマ計測への応用
- 30aB06 逆転磁場ピンチプラズマにおける静電揺動(ミラー・FRC他)
- 29pA02 RFPプラズマにおけるダイナモ作用の機構(ミラー/FRC他)