Fabrication and characterization of freestanding GaAs/AlGaAs core-shell nanowires and AlGaAs nanotubes by using selective-area metalorganic vapor phase epitaxy
スポンサーリンク
概要
- 論文の詳細を見る
We fabricated GaAs/AlGaAs core-shell nanowires by using selective-area metalorganic vapor phase epitaxy. First, GaAs nanowires were selectively grown on partially masked GaAs (111)B substrates; then AlGaAs was grown to form freestanding heterostructured nanowires. Investigation of nanowire diameter as a function of AlGaAs growth time suggested that the AlGaAs was grown on the sidewalls of the GaAs nanowires, forming GaAs/AlGaAs core-shell structures. Microphotoluminescence measurements of GaAs and GaAs/AlGaAs core-shell nanowires reveal an enhancement of photoluminescence intensity in GaAs/AlGaAs core-shell structures. Based on these core-shell nanowires, AlGaAs nanotubes were formed by using anisotropic dry etching and wet chemical preferential etching to confirm the formation of a core-shell structure and to explore a new class of materials.
- American Institute of Physicsの論文
- 2005-08-29
American Institute of Physics | 論文
- Influence of film composition in Co2MnSi electrodes on tunnel magnetoresistance characteristics of Co2MnSi/MgO/Co2MnSi magnetic tunnel junctions
- Tunneling anisotropic magnetoresistance in epitaxial CoFe/n-GaAs junctions
- Highly spin-polarized tunneling in fully epitaxial Co2Cr0.6Fe0.4Al/MgO/Co50Fe50 magnetic tunnel junctions with exchange biasing
- Tunnel magnetoresistance in epitaxial magnetic tunnel junctions using full-Heusler alloy Co2MnGe thin film and MgO tunnel barrier
- Structural and magnetic properties of epitaxially grown full-Heusler alloy Co2MnGe thin films deposited using magnetron sputtering