A Continuum-Mechanical Model for the Flow of Anisotropic Polar Ice
スポンサーリンク
概要
- 論文の詳細を見る
In order to study the mechanical behaviour of polar ice masses, the method of continuum mechanics is used. The newly developed CAFFE model (Continuum-mechanical, Anisotropic Flow model, based on an anisotropic Flow Enhancement faclor) is described, which comprises an anisotropic flow law as well as a fabric evolution equation. The flow law is an extension of the isotropic Glen's flow law, in which anisotropy enters via an enhancement factor that depends on the deformability of the polycrystal. The fabric evolution equation results from an orientational mass balance and includes constitutive relations for grain rotation and recrystallization. The CAFFE model fulfills all the fundamental principles of classical continuum mechanics, is sufficiently simple to allow numerical implementations in ice-flow models and contains only a limited number of free parameters. The applicability of the CAFFE model is demonstrated by a case study for the site of the EPICA (European Project for Ice Coring in Antarctica) ice core in Dronning Maud Land, East Antarctica.Physics of Ice Core Records II : Papers collected after the 2nd International Workshop on Physics of Ice Core Records, held in Sapporo, Japan, 2-6 February 2007. Edited by Takeo Hondoh
- Institute of Low Temperature Science, Hokkaido Universityの論文
Institute of Low Temperature Science, Hokkaido University | 論文
- The Earthquake-Induced Slide on the Sherman Glacier, South-Central Alaska, and Its Glaciological Effects
- Polar Regions Snow Cover
- Texture of the Upper 1000 m in the GRIP and NorthGRIP Ice Cores
- Evolution of the Texture along the EPICA Dome C Ice Core
- An Overview of Microphysical Processes in Ice Sheets : Toward Nanoglaciology