Are Self-Organised Critical Dislocation Dynamics Relevant to Ice Sheet Flow?
スポンサーリンク
概要
- 論文の詳細を見る
It was recently shown thai crystals (including ice) plastically deform in an intermittent manner in usual laboratory conditions. The present paper aims at discussing whether such self-organised critical dynamics still apply to polar ice sheet conditions. Field data suggest that grains should contain between zero and one dislocation moving at a time. However, this is nothing but an average estimate. Field data also show that strong back-stresses are present, collesponding to a significant density of potentially mobile dislocations. These findings, together with the very low loading level, are consistent with critical dislocation dynamics, in which collective motion events occur for a short time, followed by long periods of inactivity during which grain growth, rotation recrystallization and other recovery processes contribute to the reduction of the long range internal stress field. The stress and grain size dependencies of the strain rate are derived on this basis. The applicability of the Hall-Petch law is also discussed.Physics of Ice Core Records II : Papers collected after the 2nd International Workshop on Physics of Ice Core Records, held in Sapporo, Japan, 2-6 February 2007. Edited by Takeo Hondoh
- Institute of Low Temperature Science, Hokkaido Universityの論文
Institute of Low Temperature Science, Hokkaido University | 論文
- The Earthquake-Induced Slide on the Sherman Glacier, South-Central Alaska, and Its Glaciological Effects
- Polar Regions Snow Cover
- Texture of the Upper 1000 m in the GRIP and NorthGRIP Ice Cores
- Evolution of the Texture along the EPICA Dome C Ice Core
- An Overview of Microphysical Processes in Ice Sheets : Toward Nanoglaciology