Valley Spin Sum Rule for Dirac Fermions: Topological Argument
スポンサーリンク
概要
- 論文の詳細を見る
We consider a two-dimensional lattice system with two sites in its unit cell. In such a system, the Bloch band spectrum can have some valley points, around which Dirac fermions appear as low-energy excitations. Each valley point has a valley spin \pm 1. In the system, there are two topological numbers counting vortices and merons in the Brillouin zone, respectively. These numbers are equivalent, and this fact leads to a sum rule that states that the total sum of the valley spins is absent even in a system without time-reversal and parity symmetries. We can see some similarity between the valley spin and chirality in the Nielsen--Ninomiya no-go theorem in odd-spatial dimensions.
- 2011-04-15
論文 | ランダム
- 28a-SZD-3 高効率a-Si太陽電池のテクスチャ構造による光閉じ込め効果(2)
- 太陽光発電の開発現状
- エネルギ-の新しい展開 太陽電池の材料技術 (特集 環境対応の自動車材料(2))
- 27a-TC-4 希ガスプラズマ処理によるa-Si:Hの特性改善
- 光によるマイクロマシンへのエネルギー供給技術(第3報)-微小サイズ光電変換素子の高出力化に関する検討-