Valley Spin Sum Rule for Dirac Fermions: Topological Argument
スポンサーリンク
概要
- 論文の詳細を見る
We consider a two-dimensional lattice system with two sites in its unit cell. In such a system, the Bloch band spectrum can have some valley points, around which Dirac fermions appear as low-energy excitations. Each valley point has a valley spin \pm 1. In the system, there are two topological numbers counting vortices and merons in the Brillouin zone, respectively. These numbers are equivalent, and this fact leads to a sum rule that states that the total sum of the valley spins is absent even in a system without time-reversal and parity symmetries. We can see some similarity between the valley spin and chirality in the Nielsen--Ninomiya no-go theorem in odd-spatial dimensions.
- 2011-04-15
論文 | ランダム
- 脳血管障害に対する遺伝子治療に関する研究:カルシトニン遺伝子関連ペプチド(CGRP)を用いた新たな治療の試み
- P-42 肺切除術後膿胸例の検討 : 気管支瘻合併例を中心に(示説 4)
- V-1 左上幹よりポリープ状に発育した扁平上皮癌に対する左上幹管状切除術(ビデオ 1)
- 28.第2癌に対し左上葉気管支管状切除術を施行した1例(第55回日本肺癌学会中部支部会)
- 外耳道良性腫瘍(apocrine hydrocystoma)の1例