Silicon Beam Resonator Utilizing the Third-Order Bending Mode
スポンサーリンク
概要
- 論文の詳細を見る
A silicon beam resonator utilizing the third-order bending mode is designed and fabricated. It has three driving electrodes for increasing the amplitude of the third-order mode. The mechanical vibration modes of the beam are measured using a laser-Doppler vibrometer, and the electrical characteristic is evaluated with a network analyzer. Because the in-plane vibration is caused by the electrostatic force exerted on a gap between the beam and each driving electrode, the amplitude of the third-order mode in the in-plane vibration can be enhanced by placing three driving electrodes along a resonant beam. The measured resonant frequencies well agree with the simulated ones. From the measurement of the third-order mode in the in-plane vibration with a network analyzer, it has been shown that resonant frequency decreases by 2.3 kHz as DC voltage increases from 30 to 70 V owing to the spring softening effect. The DC bias dependence agrees well between the electrical and mechanical measurements. Finally, the mechanism of inducing an out-of-plane vibration is discussed from a viewpoint of the influence of the electric field generated on a substrate.
- Published by the Japan Society of Applied Physics through the Institute of Pure and Applied Physicsの論文
- 2009-06-25
著者
-
Suzuki Kenichiro
College Of Science And Engineering Ritsumeikan University
-
TANIGAWA Hiroshi
Research Laboratory of Precision Machinery and Electronics, Tokyo Institute of Technology
-
Okada Mitsuhiro
College of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
-
Niki Kazuya
Electronic Device Company, Sanyo Electric Co., Ltd., Daito, Osaka 574-8534, Japan
-
Tamano Akimasa
College of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
-
Nagasaki Hironori
Electronic Device Company, Sanyo Electric Co., Ltd., Daito, Osaka 574-8534, Japan
関連論文
- Characterization of Four-Points-Pinned Ring-Shaped Silicon Microelectromechanical Systems Resonator
- Design and Fabrication of Two-Stage-Driven Cantilever-Based RF MEMS Micro-Switch
- Silicon Fishbone-Shaped MEMS Resonator with Digitally Variable Resonant-Frequency Tuning
- Characteristics of Three-Dimensional Resonant Vibration in a MEMS Silicon Beam Resonator
- Design and Fabrication of a Laterally-Driven Silicon RF Micro-Switch with High Isolation (特集 次世代自動車センシングシステム)
- High Quality Factor 80 MHz Microelectromechanical Systems Resonator Utilizing Torsional-to-Transverse Vibration Conversion
- Microelectromechanical Systems Resonator Utilizing Torsional-to-Transverse Vibration Conversion
- Silicon Beam Microelectromechanical Systems Resonator with a Sliding Electrode
- Lamé-Mode Octagonal Microelectromechanical System Resonator Utilizing Slanting Shape of Sliding Driving Electrodes
- Two-Stage-Driven Cantilever-Based RF Micro-Electro-Mechanical System Microswitch
- Silicon Beam Resonator Utilizing the Third-Order Bending Mode
- Temperature Dependence of Hyperfine Spectrum of Rb D_1 Line
- Variable Resonance Frequency Selection for Fishbone-Shaped Microelectromechanical System Resonator Based on Multi-Physics Simulation
- Laterally-Driven Silicon RF Micro-Switch with High Isolation