Entropy Regularized Fuzzy c-Means for Data with Tolerance introducing Penalty Term in Feature Space
スポンサーリンク
概要
- 論文の詳細を見る
A new fuzzy c-means algorithms for data with tolerance is proposed byintroducing a penalty term in feature space.Its idea is derived from that support vector machineintroducing a penalty term for "soft margin" in feature space.In the proposed method,the data is allowed to move for minimizing the corresponding objective functionbut this move-ness is controlled by the penalty term.First, an optimization problem is shownby introducing tolerance with conventional fuzzy c-means algorithm in feature space.Second, Karush-Kuhn-Tucker~(KKT) conditions of the optimization problem is considered.Third, an iterative algorithm is proposed by re-expressing the KKT conditionsusing kernel trick.Fourth, another iterative algorithm is proposed for fuzzy classification function,which shows how prototypical an arbitrary point in the data space is to the obtained each cluster by extending the membership to the whole space.Last, some numerical examples are shown.
- 日本知能情報ファジィ学会の論文
日本知能情報ファジィ学会 | 論文
- FCNによる自律エージェントの行動制御と行動解析 : タルタロス問題への応用
- コンフリクト, 迷いと意思決定(意思決定)
- 認知心理学における類似性研究(類似尺度と情報検索)
- アメリカ留学体験記
- 文脈への意味の位置付けを用いた対話システムとその評価(言語,テキストの知能情報処理)