SOM based color constancy algorithm for RoboCup robots
スポンサーリンク
概要
- 論文の詳細を見る
In this paper, we present the color recognition algorithm based on color constancy algorithm of using Self-Organizing Map (SOM) for our robot vision system. SOM is an unsupervised learning algorithm that performs topology-preserving transformation from higher-dimensional vector data spaces to low map spaces. The SOM has become a powerful tool in many areas such as data mining, data analysis, data classification, and data visualization. Our robot vision system is based on YUV and HSV color map spaces. Both color maps have different vector spaces, then, some objects are recognized by using threshold to use logical addition to YUV and HSV thresholds. To realize a robust robot vision system against light changing environment, in our new robot vision algorithm, recognition of the light color environment and the threshold parameters are, both, estimated by using SOM.
- 日本知能情報ファジィ学会の論文
日本知能情報ファジィ学会 | 論文
- FCNによる自律エージェントの行動制御と行動解析 : タルタロス問題への応用
- コンフリクト, 迷いと意思決定(意思決定)
- 認知心理学における類似性研究(類似尺度と情報検索)
- アメリカ留学体験記
- 文脈への意味の位置付けを用いた対話システムとその評価(言語,テキストの知能情報処理)