Fuzzy Multi-Resolution Image Similarity Modeling applied to Image Retrieval
スポンサーリンク
概要
- 論文の詳細を見る
A multi-resolution image similarity model based on region-based image similarity modeling and fuzzy aggregation operators is presented, where the overall image similarity between two images is based on fuzzyin three sets of crisp valued similarities: feature, region and image, respectively, in a hierarchical manner. It helps reducing the influence of inaccurate image segmentations of the global and region-based image similarity models. Compared with the image similarity modeling on either global or region-based representation with crisp valued feature, region or image similarity representations, the proposed modeling results in the better overall retrieval performance with an average retrieval precision higher between 2% and 6%. Compared to two image retrieval systems, SIMPLicity and WBIIS, the proposed model brings an increase of 2% and 22% respectively in average retrieval precision. The descriptive power of the image similarity model increases by allowing model itself to capture the variety of the similarity criteria when compared to the conventional image similarity models. The proposed multiresolution image similarity modeling is thus more suited when approximating human perception of the image similarity in image retrieval.
- 日本知能情報ファジィ学会の論文
日本知能情報ファジィ学会 | 論文
- FCNによる自律エージェントの行動制御と行動解析 : タルタロス問題への応用
- コンフリクト, 迷いと意思決定(意思決定)
- 認知心理学における類似性研究(類似尺度と情報検索)
- アメリカ留学体験記
- 文脈への意味の位置付けを用いた対話システムとその評価(言語,テキストの知能情報処理)