Accuracy-Complexity Tradeoff Analysis in Data Mining by Multiobjective Genetic Rule Selection
スポンサーリンク
概要
- 論文の詳細を見る
In this paper, we demonstrate that multiobjective genetic rule selection improves the accuracy-complexity tradeoff curve of extracted rules in data mining. That is, it significantly decreases the number of extracted rules without degrading their classification accuracy. First we briefly explain heuristic rule extraction and multiobjective genetic rule selection. Then we examine the classification accuracy of extracted rules through computational experiments. Experimental results show that the classification accuracy of extracted rules strongly depends on parameter specifications in heuristic rule extraction. It is also shown that appropriate parameter specifications are problem-dependent. Finally we demonstrate that multiobjective genetic rule selection significantly decreases the number of extracted rules without degrading their classification accuracy.
- 日本知能情報ファジィ学会の論文
日本知能情報ファジィ学会 | 論文
- FCNによる自律エージェントの行動制御と行動解析 : タルタロス問題への応用
- コンフリクト, 迷いと意思決定(意思決定)
- 認知心理学における類似性研究(類似尺度と情報検索)
- アメリカ留学体験記
- 文脈への意味の位置付けを用いた対話システムとその評価(言語,テキストの知能情報処理)