Switching Projection Pursuit Regression Using Local Independent Components
スポンサーリンク
概要
- 論文の詳細を見る
Independent Component Analysis (ICA) is a technique for blind source separation and is also useful in regression (prediction) task when only a subset of random variables is observed. Because the task of regression by ICA consists of finding non-Gaussian components, it is closely related to projection pursuit regression. Local independent component analysis (Local ICA) is a non-linear extension of linear ICA models that extract local feature values by applying linear ICA in conjunction with suitable clustering algorithms. This paper proposes a switching regression model, in which local linear structure is first captured by fuzzy clustering, and then a non-linear regression model is estimated by a modified ICA model considering fuzzy memberships in each cluster.
- 日本知能情報ファジィ学会の論文
日本知能情報ファジィ学会 | 論文
- FCNによる自律エージェントの行動制御と行動解析 : タルタロス問題への応用
- コンフリクト, 迷いと意思決定(意思決定)
- 認知心理学における類似性研究(類似尺度と情報検索)
- アメリカ留学体験記
- 文脈への意味の位置付けを用いた対話システムとその評価(言語,テキストの知能情報処理)