Profit Sharing Based Reinforcement Learning Systems in Continuous State Spaces
スポンサーリンク
概要
- 論文の詳細を見る
Reinforcement Learning is a kind of machine learning. We know Profit Sharing, the Rational Policy Making algorithm (RPM), the Penalty Avoiding Rational Policy Making algorithm and PS-r* to guarantee the rationality in a typical class of the Partially Observable Markov Decision Processes. However they cannot treat continuous state spaces. In this paper, we present a solution to adapt them in continuous state spaces. Previously, we give RPM a prototype mechanism to treat continuous state spaces. However it cannot treat any penalty. In this paper, we extend it to the environment where there is a reward and a penalty. We show the effectiveness of the proposed method in numerical examples.
- 日本知能情報ファジィ学会の論文
日本知能情報ファジィ学会 | 論文
- FCNによる自律エージェントの行動制御と行動解析 : タルタロス問題への応用
- コンフリクト, 迷いと意思決定(意思決定)
- 認知心理学における類似性研究(類似尺度と情報検索)
- アメリカ留学体験記
- 文脈への意味の位置付けを用いた対話システムとその評価(言語,テキストの知能情報処理)