多群指数モデルにおける平均パラメータの多重比較法
スポンサーリンク
概要
- 論文の詳細を見る
We construct multiple comparisons procedures in k exponential populations. Exact theory and asymptotic theory of simultaneous confidence intervals and multiple comparisons tests are discussed.First, we consider multiple comparisons for the differences among parameters. We can give the Tukey-Kramer type multiple test procedure based on estimators of k means. However, the degree of conservativeness for the multiple tests depends on unknown mean parameters. Therefore, multiple tests based on the logarithm transformation of estimators are proposed. It is found that the degree of conservativeness for the proposed tests is controlled by the sample sizes. Furthermore, the closed testing procedure, more powerful than the REGW (Ryan/Einot-Gabriel/Welsch) tests, is proposed. Simultaneous confidence intervals for the differences among the logarithms of parameters are discussed.Next, for the multiple comparisons with a control, we propose the multiple test procedures. It is shown that the proposed multiple test is superior to the tests based on the Bonferroni inequality asymptotically. A sequentially rejective procedure is derived under unequal sample sizes. Last, we consider multiple comparisons for all parameters. The exact single-step multiple comparison procedures based on the upper 100α% points the χ2.distribution are proposed. The asymptotic theory for the multiple comparisons is discussed. Especially sequentially rejective procedures can be constructed in the asymptotic theory.
- 日本計量生物学会の論文
日本計量生物学会 | 論文
- 重要な安全性情報を早期に検出する仕組み : シグナル検出の最近の手法について
- 代替エンドポイントの評価のための統計的基準とその適用事例
- 臨床試験に対する生物統計学の社会的貢献 : 4半世紀の経験と今後の展望
- Analysis of Age Dependency of Permanent Tooth Loss Based on Repeated Observations
- 多施設共同臨床試験における施設間差を考慮にいれた症例集積期間再推定