LAI Estimation from HS-Data using Group Division Method
スポンサーリンク
概要
- 論文の詳細を見る
With recent population growth and global warming, stable food supply is an urgent requirement on a global scale. To cope with this demand, effective use of remote sensing data attracts attention. Among all, Leaf Area Index (LAI) extracted from remotely sensed data may contribute to the increase of yield and adjustment of quantity of manure, if we can automatically estimate the LAI over a wide area to grasp a yield of paddy. Therefore the purpose of this study is to estimate the LAI through remote sensing. In this paper, "Group division method" is proposed to decide a set of bands to be used for the LAI estimation, because the information obtained by a hyper spectrum sensor is enormous. This technique is to decide an index by comparing the order of ground truth data with that of the index based on spectral data. An effective index to estimate LAI is made by reflectances in 545nm, 1170nm and 1290nm using the data from the rice field of Sakata City, Yamagata Pref. as training data. Furthermore, we applied the index to the data set obtained in Furukawa, Miyagi Pref. to verify the effectiveness of the method. Finally we show a "LAI estimate map" and examine whether this study can contribute to estimate the LAI distribution over the wide area.
- 社団法人 日本写真測量学会の論文
社団法人 日本写真測量学会 | 論文
- Landform monitoring of Tottori Sand Dune using aerial photographs.
- One Projector-One Camera System on Short Range Photogrammetry
- タイトル無し
- A Study on Environmental Evaluation Method Using the Satellite Image-Radiation quantity adjustment of multi-temporal data-.:-Radiation quantity adjustment of multi-temporal data-
- タイトル無し