Effect of Axial Spacing between the Components on the Performance of a Counter Rotating Turbine
スポンサーリンク
概要
- 論文の詳細を見る
Counter Rotating Turbine (CRT) is an axial turbine with a nozzle followed by a rotor and another rotor that rotates in the opposite direction of the first one. Axial spacing between blade rows plays major role in its performance. Present work involves computationally studying the performance and flow field of CRT with axial spacing of 10, 30 and 70% for different mass flow rates. The turbine components are modeled for all the three spacing. Velocity, pressure, entropy and Mach number distributions across turbine stage are analyzed. Effect of spacing on losses and performance in case of stage, Rotor1 and Rotor2 are elaborated. Results confirm that an optimum axial spacing between turbine components can be obtained for the improved performance of CRT.
- ターボ機械協会、韓国流体機械学会、中国工程熱物理学会、国際水理学会の論文
ターボ機械協会、韓国流体機械学会、中国工程熱物理学会、国際水理学会 | 論文
- Prediction of Wear Depth Distribution by Slurry on a Pump Impeller
- Computational Investigations of Impingement Heat Transfer on an Effused Concave Surface
- Influence of Blade Outlet Angle and Blade Thickness on Performance and Internal Flow Conditions of Mini Centrifugal Pump
- Experimental Study on Surge Inception in a Centrifugal Compressor
- Erratum:Dynamic Analysis of Francis Runners - Experiment and Numerical Simulation[International Journal of Fluid Machinery and Systems Vol. 2 (2009) , No. 4 (October-December), pp.303-314]