Design and Prediction of Three Dimensional Flows in a Low Speed Highly Loaded Axial Flow Fan
スポンサーリンク
概要
- 論文の詳細を見る
This paper describes the design to increase the blade loading factor of a low speed axial flow fan from normal 0.42 to highly loaded 0.55. A three-dimensional viscous solver is used to model the flows in the highly-loaded and normal loaded stages over its operation range. At the design point operation the static pressure rise can be increased by 20 percent with a deficit of efficiency by 0.3 percent. In the highly loaded fan stage, the rotor hub flow stalls, and separation vortex extends over the rotor hub region. The backflow, which occurs along the stator hub-suction surface, changes the exit flow from the prescribed axial direction. Results in this paper confirm that the limitation of the two dimensional diffusion does not affect primarily on the fan's performance. Highly loaded fan may have actually better performance than its two dimensional design. Three dimensional designing approaches may lead to better highly loaded fan with controlled rotor hub stall.
- ターボ機械協会、韓国流体機械学会、中国工程熱物理学会、国際水理学会の論文
ターボ機械協会、韓国流体機械学会、中国工程熱物理学会、国際水理学会 | 論文
- Prediction of Wear Depth Distribution by Slurry on a Pump Impeller
- Computational Investigations of Impingement Heat Transfer on an Effused Concave Surface
- Influence of Blade Outlet Angle and Blade Thickness on Performance and Internal Flow Conditions of Mini Centrifugal Pump
- Experimental Study on Surge Inception in a Centrifugal Compressor
- Erratum:Dynamic Analysis of Francis Runners - Experiment and Numerical Simulation[International Journal of Fluid Machinery and Systems Vol. 2 (2009) , No. 4 (October-December), pp.303-314]